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Abstract. The transfer matrix method was used to study the resonant modes in photonic quantum well by
stacking different photonic crystals consisting of positive index materials and negative index materials. The
eigenfrequency equation for the resonant modes is derived. It is found that these resonant modes are om-
nidirectional, and the number of resonant modes is equal to the period number of photonic quantum wells.
Moreover, the resonant modes become N-fold splitting in the N photonic quantum wells. The splitting
intervals increase with the deceasing of photonic barrier thickness due to the coupling among the wells.

PACS. 42.70.Qs Photonic bandgap materials – 41.20.Jb Electromagnetic wave propagation; radiowave
propagation – 42.79.Ci Filters, zone plates, and polarizers

1 Introduction

Since the pioneering work of Yablonovitch and John [1,2],
photonic crystals (PCs) have attracted considerable atten-
tion due to potential applications of photonic band gap.
It is well known that electronic quantum well (QW) is
formed by electronic band mismatch. If the energy band of
the well layer is submerged into the band gap of the barrier
layer, the electronic energies in electronic quantum well
are quantised due to quantum confinement effects. Using
an electronic quantum well as an analogy, photonic quan-
tum well has been proposed by inserting a photonic well
into photonic barriers [3–8]. Due to the confinement ef-
fect of photonic barriers, quantised confined modes in such
structures are predicted in these studies. If the frequency
is tuned to the frequency of the quantised confined modes,
the light will be transmitted in manner of resonance, lead-
ing to the multiple channeled filtering phenomena [9,10].
So, the quantised confined modes are also called the reso-
nant modes. It must be noted here that resonant modes in
conventional photonic QW come into being owing to the
confinement effect of Bragg gap. Therefore the resonant
modes in the Bragg gap depend strongly on incident an-
gles and polarisations because of multiple scattering. For
this reason, the phenomenon has only been used for fil-
ters under the limit of normal incidence. However, if we
use a novel gap originated from the mechanism beyond
Bragg scatting as the photonic barrier, we may overcome
the shortcomings mentioned above.
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It is shown that one-dimensional photonic crystals
(1DPCs) fabricated by positive index materials (PIMs)
and negative index materials (NIMs) have a new type of
band gap called zero-averaged refractive index (zero-n̄)
gap [11]. The properties of the zero-n̄ gap are inde-
pendent of incident angles and polarisations [12], which
differs from that of Bragg gap. Omnidirectional defect
modes are found in the zero-n̄ gap when defects are in-
troduced [13–16]. It is expected that the resonant modes
of photonic QW where the zero-n̄ gap acts as photonic
barrier can show the omnidirectional properties. In this
paper we investigate the properties of resonant modes in
the zero-n̄ gap and inter-well coupling among multiple
photonic QW containing NIMs by means of the trans-
fer matrix methods. The paper is organised as follows. In
Section 2 we derive the eigenfrequncy equation for the res-
onant modes of photonic QW containing NIMs and study
the dependence of resonant modes on the incident angles
and polarization. In Section 3 we discussed the mutual
coupling among N photonic QW. It is shown that the
resonant modes become N -fold splitting and the splitting
interval increases with the decrease of photonic barrier
thickness. Finally, we conclude the report in Section 4.

2 Eigenfrequency equation for the resonant
modes in photonic QW

The photonic QW in our research is stacked by two dif-
ferent 1DPCs (AB)m and (CD)n which are shown in Fig-
ure 1. A(C) and B(D) indicate the PIMs and NIMs re-
spectively. m(n) is the period number. The permittivity
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Fig. 1. Schematic of photonic quantum well structure by stack-
ing two different 1D photonic crystals (AB)m and (CD)n.

and permeability of A(C) is εA(C) = 9.0 and μA(C) = 1.0.
B(D) are assumed to be isotropic and dispersive, with
effective ε and μ given by

εB(D) = ε0 − α

ω2
(1)

μB(D) =μ0 − β

ω2
. (2)

The dispersion relations can be realised in a compos-
ite made of periodically LC loaded transmission lines. In
equations (1) and (2), ω is the angular frequency mea-
sured in gigahertz, ε0 and μ0 represent permittivity and
permeability of an unperturbed transmission line, α and
β are circuit parameters and can be modulated with great
freedom. In our calculation, we choose the parameters
ε0 = μ0 = 1.0, α = 900 and β = 400 as that in ref-
erence [17]. The thicknesses of A, B, C and D is dA =
16 mm, dB = 4 mm, dC = 2.5 mm and dD = 17.5 mm re-
spectively. Photonic band structure for (AB)m and (CD)n
is shown in Figure 2 on normal incidence. It is obvious that
there is a frequency interval from 0.83 to 1.35 GHz, which
is the zero-n̄ gap [10,11] for (AB)m but in the allowed
band for (CD)n. For the frequency in this interval, the
structure is analogous with an electronic QW of the semi-
conductor. The (AB)m acts as a barrier while the (CD)n
acts as a well. The electromagnetic wave is evanescent in
the (AB)m region while it takes a form of travelling wave
in the (CD)n region.

In order to derive the eigenfrequency equation for the
resonant modes, we presume that m → ∞ so the photonic
QW can be regarded as two semi-infinite PCs doped by
an array of defects. Let a monochromatic plane, either a
transverse electric (TE) or a transverse magnetic (TM)
wave be incident along the z direction from vacuum onto
the considered structure. The electric and magnetic fields
in z and z + Δz in the same layer can be related via a
transfer matrix [18]

Mi(Δz)=
(

cos(kiΔz) − 1
σi

sin(kiΔz)
σi sin(kiΔz) cos(kiΔz)

)
(i = A, B, C, D),

(3)

Fig. 2. The dispersion relation of frequency versus the Bloch
wave number for (AB)m (the solid line) and for (CD)n (the
dashed line) with the following parameters: εA(C) = 9.0,
μA(C) = 1.0, ε0 = μ0 = 1.0, α = 900 and β = 400;
dA = 16 mm, dB = 4 mm, dC = 2.5 mm and dD = 17.5 mm.

where ki = ω
c δ

(
εiμi − sin2 θ

)1/2
, δ = ±1, we let δ = +1

for PIMs and δ = −1 for NIMs (when εi and μi are all
negative, ki is negative too). c is the light speed in vacuum
and θ is the incident angle; σi = kic

ωμi
for TE wave and σi =

kic
ωεi

for TM wave. For perfect 1DPCs, according to the
Bloch theorem, the dispersive relation can be written as

cos(Kd) =
1
2
Tr [MB(dB)MA(dA)] =

1
2
TrQ, (4)

where K is the Bloch wave number and d is the period
of PCs AB. According to equation (4) the allowed band
and the forbidden band occurs when |1/2TrQ| < 1 or
|1/2TrQ| > 1, respectively.

When an array of (CD)n is sandwiched between the
two semi-infinite PCs, the resonant mode will be found
in the forbidden gap. For the resonant modes, the elec-
tromagnetic waves inside the two semi-infinite PCs are
evanescent. These evanescent waves can be connected with
each other via a transfer matrix

W = [MD(dd)MC(dC)]n . (5)

After some algebra calculation, we obtain the eigenfre-
quency equation for the resonant modes

xy2W11 + y1y2W12 + x2W21 + xy1W22 = 0, (6)

where Wij are the elements of matrix W and x = Q12,
y1 = Q22 − Λ, y2 = Q11 − Λ, Λ = η(1 −

√
1 − 11η2 and

η = 1/2TrQ, Qij are the elements of matrix Q.
Firstly, we let θ = 0◦. Through solving the eigenfre-

quency equation by means of Bisection Method we can
find the relationships between resonant modes and the pe-
riod numbers of (CD)n in the well region, which is plotted
in Figure 3. We can see that the number of resonant modes
are equal to the periods of well. This is similar to that of
the conventional photonic QW [9].
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Fig. 3. Variation of the resonant modes in the forbidden band
as a function of the period numbers of (CD)n in the well region.
The dotted line represents the band edge. The parameters are
the same as those in Figure 2.

Fig. 4. Dependence of the photonic band gap and the
resonant modes on the incident angle in infinite structure
(AB)m (CD)n (AB)m, with n = 3. Other parameters are the
same as those in Figure 2.

We then investigated the dependence of resonant
modes inside the zero-n̄ gap on the incident angle. The
dispersion relation of the photonic band gap and these
resonant modes are shown in Figure 4, in which, we se-
lect the periods of well n = 3. It can be seen from the
figures that three resonant modes appear in zero-n̄ gap
at frequencies about 0.913, 1.041 and 1.203 GHz, respec-
tively. As shown in Figure 4, the three resonant modes
inside the zero-n̄ gap are almost independent of the in-
cident angles and polarisations. The weak incident angle
dependence of the resonant mode inside zero-n̄ gap may
be useful in applications, such as omnidirectional filters
with multi-channels, whose number of channel and fre-
quency interval can be varied conveniently by adjusting
the period numbers of (CD)n in the well region.

Fig. 5. The transmittance through the [(AB)4(CD)3]
N (AB)4

structure: (a) for N = 1, (b) for N = 2 and (c) for N = 3 re-
spectively. Other parameters are the same as those in Figure 2.

3 Inter-well coupling in multiple photonic
QW structure

In this section, we study the inter-well coupling in mul-
tiple photonic QW structure. We denote the structure as
[(AB)m(CD)n ]N (AB)m , where N is the number of pho-
tonic wells. Figure 5 shows the transmittance through
[(AB)4 (CD)3 ]N (AB)4 structure under different numbers
of the photonic well. You can see from Figure 5a that
there are three resonant tunneling modes in the gap, which
agree with the above results obtained by solving eigenfre-
quency equation. With the increasing number of photonic
wells, each mode splits two in Figure 5b and three in Fig-
ure 5c. We can come to the conclusion that the modes be-
come N -fold splitting if there are N photonic wells. The
splitting properties are analogous to that of electrons in a
semiconductor superlattice [19]. We can explain the phe-
nomena by the following inter-well coupling mechanism. If
the N photonic wells are separated from each other with a
large enough barrier width, there is no interaction between
adjacent wells and the multiple photonic QW will have
N -fold degenerate eigenmodes with the same frequency as
the corresponding single QW, which is similar to bounds
states in multiple QW [20]. When inter-well spacing is
small enough, the degeneracy of eigenmodes tend to dis-
appear which leads to N-fold splitting owing to the inter-
well coupling. In Figure 6, we calculate the transmittance
through the [(AB)m(CD)2]2(AB)m systems with differ-
ent period numbers for PCs AB. One can discover from
Figures 6a–6c that the interval of frequency splitting be-
comes larger with the period number of (AB)m reducing.
This is due to the fact that decreasing the period number
of (AB)m means decreasing the inter-well spacing. This
causes the coupling strength of inter-well to increase which
results in a much larger splitting interval.

In order to better understand the inter-well cou-
pling mechanism which results in the modes splitting,
it is necessary to calculate the electric field intensity in
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Fig. 6. The transmittance through the [(AB)m(CD)3]
2(AB)m

structure: (a) for m = 4, (b) for m = 3 and (c) for
m = 2, respectively. Other parameters are the same as those
in Figure 2.

Fig. 7. The electric field intensity inside the
[(AB)4(CD)3]

3(AB)4 structure at normal incidence. Cor-
responding resonant frequencies are: (a) 1.034 GHz, (b)
1.041 GHz and (c) 1.045 GHz. Other parameters are the same
as those in Figure 2.

multiple photonic QW. With the help of transfer ma-
trix methods, we show the electric field intensity |E|2
of the [(AB)4(CD)3]3(AB)4 structure in Figures 7a–7c.
Corresponding frequencies are 1.034 GHz, 1.041 GHz and
1.045 GHz which are the second three-fold splitting modes
located in the middle of Figure 5c. It can be seen from Fig-
ure 7a and 7c that the field intensity of the first and the
third splitting modes localised strong in the well regions,

especially in the second well. For the second spitting mode,
the electric field mainly localised the first and the third
well as shown in Figure 7b.

4 Conclusions

In conclusion, resonant modes in the zero-n̄ gap of pho-
tonic QW with NIMs were investigated. It is shown that
the number of resonant modes is equal to that of the pe-
riod in the well region and that the resonant modes are
insensitive to incident angle and polarisation. We then cal-
culated the transmittance of multiple photonic QW. The
result indicated that the resonant modes undergo N-fold
splitting due to inter-well coupling. Furthermore, the split-
ting interval can be adjusted by changing the thickness of
photonic barriers.
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