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A Fraunhofer computer-generated hologram (CGH) is proved to be valid in display for three-dimensional (3D) ob-
jects from the Fresnel to the far-field region without a Fourier lens for reconstruction. To quickly compute large and
complicated 3D objects that consist of slanted diffused surfaces in the Fresnel region, a Fraunhofer-based analytical
approach using a basic-triangle tiling diffuser is developed. Both theoretical and experimental results reveal that
Fraunhofer CGH can perform the same effects as Fresnel CGH but require less calculation time. Impressive 3D solid
effects are achieved in the Fresnel region. © 2011 Optical Society of America
OCIS codes: 090.0090, 090.1760, 090.2870.

Three-dimensional display has attracted tremendous at-
tention [1–17]. The computer-generated hologram (CGH)
is a promising technique for 3D display [1–3]. For the
flexibility of controlling all aspects of an optical wave,
it can produce the most accurate depth cues for 3D ob-
jects that exist or never exist in the real world [1].
An important issue regarding CGHs is the computation

of propagation. For convenient observation, objects in
different depths are usually located within the Fresnel
region. Fresnel diffraction is naturally used to calculate
3D imaging with considerable depth-of-field (DOF). But it
is difficult to reduce computational complexity while
maintaining a full parallax effect [3,7]. Recently, methods
of wave propagation on either parallel planes [8,9] or
slanted planes [10,11] were developed, which can be ap-
plied to calculate Fresnel diffraction. Some researchers
proposed analytical Fourier spectrum methods to de-
crease the computational complexity [12,13].
Optical Fraunhofer holography is usually considered

as a method that can only be applied in the far-field re-
gion. Distance between objects and the hologram need to
be very large, or the size of objects need to be very small
[3,14]. People take for granted that Fraunhofer CGH (Fh-
CGH) has asimilar restriction. It is thought that the recon-
struction performance of a Fh-CGH is similar to that of a
Fourier CGH. So a Fourier lens is usually needed for op-
tical recreation, and the DOF is shallow. Another impor-
tant aspect of the Fh-CGH is how to employ a digital
diffuser to uniformize the Fourier spectrum [2]. This is
challenging for the case of slanted planes in an analytical
Fourier spectrum method. Until recently, an inspiring ap-
proach was proposed using triangular subdivision [12].
In this Letter, we prove that Fh-CGH can image 3D ob-

jects from the Fresnel to the far-field region. We show
that Fh-CGH performs the same effects as Fresnel CGH
(Fr-CGH). A highly efficient approach based on basic-
triangle tiling is analytically derived to encode Fh-CGH
for 3D diffusive objects composed by slanted triangle
meshes. Optical reconstructions reveal a high quality 3D
solid effect.

Consider a planar object (at z < 0) with complex am-
plitude Oo parallel to the hologram (z ¼ 0) within the
Fresnel region. The object wave distribution across the
hologram can be calculated by the Fresnel formula [1]:

OFr
H ðxH; yHÞ ¼ ½expðj2πz=λÞ=jλz�QðxH; yHÞ

ZZ
Ooðxo; yoÞ

× Pðxo; yoÞ exp½−j2πðxHxo
þ yHyoÞ=λz�dxodyo; ð1Þ

where j ¼ ffiffiffiffiffiffi
−1

p
, P ¼ exp½jπðxo2 þ yo2Þ=λz�, Q ¼ exp

½jπðxH2 þ yH2Þ=λz�. λ is the wavelength. ðxo; yoÞ and
ðxH; yHÞ are the coordinate systems of the object and
the hologram, respectively. If P is discarded, Eq. (1)
becomes the Fraunhofer diffraction:

OFh
H ðxH; yHÞ ¼ ½expðj2πz=λÞ=jλz�QðxH; yHÞF ½Ooðxo; yoÞ�;

ð2Þ

where F ½⋅� stands for the Fourier transform (FT) evalu-
ated at frequencies (xH=λz, yH=λz). A plane wave RH ¼
R0 exp½j2πðxH cos αþ yH cos βÞ=λ�, is used as reference
light to encode the Fr-CGH and Fh-CGH by Eqs. (1)
and (2), respectively. Here, ðα; βÞ are angles with respect
to the ðxH; yHÞ axis. Fresnel diffraction is adopted to de-
scribe the optical reconstruction process with the same
reference light for both CGHs. After simple derivations,
we have the expressions of complex amplitude of virtual
and real images at −z and z, respectively, which are
Ovirt

Fr¼Ooðx0;y0Þ andOreal
Fr¼expf−j4π½ðx0cosα−zcos2αÞ

þðy0cosβ−zcos2βÞ�=λgO�
oðx0−2zcosα;y0−2zcosβÞ for Fr-

CGH, while Ovirt
Fh ¼ exp½−jπðx02 þ y02Þ=λz�Ooðx0; y0Þ and

Oreal
Fh ¼ exp½jπðx02 þ y02Þ=λz�O�

oðx0 − 2z cos α; y0 −
2z cos βÞ for Fh-CGH. Here, ðx0; y0Þ is the coordinate sys-
tem of the reconstruction plane. The complex amplitudes
carrying the information of objects are the same in both
CGHs results [e.g. Ooðx0; y0Þ for a virtual image and
O�

oðx0 − 2z cos α; y0 − 2z cos βÞ for a real image]. The only
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differences between Ovirt
FrðOreal

FrÞ and Ovirt
FhðOreal

FhÞ
are additional phase factors. However, human eyes
can just receive intensity of light. For the purpose of dis-
play, people are concerned only with intensity of recon-
struction rather than its complex amplitude. Therefore,
the display reconstruction performances of two such
CGHs should be the same. To examine this statement,
we encode a square aperture (with the width of 2w) into
holograms and reconstruct it numerically. Normalized
error power [15] is used to compare the reproduced
image’s intensity with the original object. Note that the
normalized error power here is the ratio of intensities
while it is the ratio of complex fields in [15]. The Fresnel
number is defined as Nf ¼ w2=λz. When Nf ≪ 1, the ob-
ject is in the far-field region; while Nf ≥ 1, it is deemed to
be in the Fresnel region [1,3]. Figure 1(a) shows that
Fh-CGH has the same high fidelity to recreate the input
image as that of a Fr-CGH, even when Nf ≫ 1. Mean-
while, Fh-CGH requires only about 2=3 computation time
of Fr-CGH [Fig. 1(b)]. These results indicate the omission
of the phase P in Eq. (1) will not affect the display per-
formance but benefit the encoding process.
The quadratic phase Q in Eq. (2) is a key term in the

Fh-CGH. Although the diffraction pattern of Fraunhofer
is the same as that of FT, mathematical analysis revealsQ
can cancel the quadratic phase related to the hologram
coordinate in the reconstruction. It means Fh-CGH can
be applied in a large DOF scene just as Fr-CGH. So
Fh-CGH is different from Fourier CGH, in which the re-
constructed images are near the focal plane and have a
shallow DOF.
In fact, the computational process of Fh-CGH is

equivalent to virtually placing lenses clingy to the front
surface of planar objects. The focal length of each lens
is equal to the distance between the object and the holo-
gram. For complex 3D objects, this is troublesome (and
nearly impossible) to be implemented in optical hologra-
phy but convenient in the CGH. Since the virtual lenses
are in the front of the objects in recording, real lenses are
not needed for imaging in optical reconstruction.
To demonstrate the concept, we calculate two Chinese

characters lying in the Fresnel region (Nf ∼ 410 and 540).
They are parallel to the hologram. Random phases are
used to encode both Fr-CGH and Fh-CGH into Kino-
forms. Optical reconstruction setup is shown in Fig. 2(a),
where a 532 nm laser is expanded to illuminate a phase-
only spatial light modulator (SLM; Holoeye Pluto, 1920 �
1080 with pixel pitch 8 μm). Real images are projected to

a scattering screen in different distances and captured by
camera. No Fourier lens is used. The performances of
Fh-CGH [Figs. 2(c) and 2(e)] are consistent with Fr-
CGH [Figs. 2(b) and 2(d)], especially for focusing and de-
focus effects. It indicates Fh-CGH can maintain as good
of a performance as Fr-CGH, even for objects in the
Fresnel region.

For off-axis slanted planar objects, we can also derive
the field distribution on the hologram through rotation
transformation andmodified paraxial approximation [16]:

OHðxH; yHÞ ¼ fexp½j2πðzc þ r0Þ=λ�=jλr0g
ZZ

Ooðxl; ylÞ

× Sðxl; ylÞ exp½−j2πðx0Hxl
þ y0HylÞ=λr0�dxldyl; ð3Þ

where S ¼ exp½jπðxl2 þ yl2Þ=λr0�, x0H ¼ r011ðxH − xcÞ
þr021ðyH − ycÞ − r031zc − r031r0, and y0H ¼ r012ðxH − xcÞ þ
r022ðyH − ycÞ − r032zc − r032r0 with r0 ¼ ½ðxH − xcÞ2þ
ðyH − ycÞ2 þ zc2�1=2. Here, ðxH; yH; 0Þ, ðxl; yl; 0Þ are the
Cartesian coordinates of the hologram plane and the local
object plane. r0ij (i, j ¼ 1, 2, 3) are the elements of the ro-
tation matrix related to the local and global Cartesian co-
ordinate. ðxc; yc; zcÞ is the object’s centroid in the global
coordinate. r0 is the distance between the object’s cen-
troid and the hologram pixel. Equations (1) and (3) can be
found similar in form, and thus, the statements about
Fh-CGH in the case of the parallel plane can be applied
for the case of an off-axis slanted plane. The quadratic
phase S can also be discarded and will not affect the dis-
play performance. Using a fast Fourier transform numer-
ical algorithm, it is easy to calculate the FT for the parallel
plane case but inconvenient for the slanted plane case be-
cause of the necessity of interpolations [10,13]. If a 3D ob-
ject is regarded as a combination of triangle patches, the
FT of Ooðxl; ylÞ can be analytically calculated to reduce
the computational complexity [12,13,16]. The remaining
problem is to apply a digital diffuser into the analytical al-
gorithm to enlarge the viewing angle and make the object
larger than the hologram.

Fig. 1. (Color online) (a) Normalized error power between
the intensities of holographic reconstructed image and
original input object for different Fresnel numbers. (b) Compar-
ison of computation time between Fh-CGH and Fr-CGH, while
Nf = 1.

Fig. 2. (Color online) (a) Setup for optical reconstruction. MO,
microscope objective; SF, spatial filter; L, lens; HWP, half-wave
plates. Reconstruction in 800mm (Nf ∼ 410) for (b) Fr-CGH
and (c) Fh-CGH and in 1100mm (Nf ∼ 540) for (d) Fr-CGH
and (e) Fh-CGH.
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Here, we develop a basic-triangle tiling diffuser to solve
the problem. Figure 3 shows the schematic diagram. The
FT of the small basic triangle “A” with vertices as (0,0),
(1,0), (0,1), denoted by FAðu; vÞ, can be deduced analyti-
cally [12,13]. With the help of the symmetry and the linear
phase shifting operations, the FT of other basic triangles
can be obtained through FA, e.g. FBðu; vÞ ¼ FAð−u;−vÞ
and FCðu; vÞ ¼ FAð−u;−vÞ exp½−j2πðuþ vÞ�. Hence, the
FT of the middle triangle “Γ”, FΓ, can be obtained from
the superposition of the basic triangles. The FT of other
middle triangles (e.g.Λ,Σ,Ω) can then be elicited through
FΓ with similar operations. Finally, the FT of the large fi-
ducial triangle “Π” with vertices as ð−10; 5Þ, (10,5), (0,5),
which contains hundreds of basic triangles, can be calcu-
lated analytically. If each basic triangle adds a random
phase and they are different in between, it is equivalent
to add a random diffuser to “Π.” So the FT of the fiducial
diffusive triangle can be achieved analytically. Using the
affine transform, Fraunhofer diffraction field of an arbi-
trary slanted triangle can be obtained by

OHðxH; yHÞ ¼
exp½j2πðzc þ r0Þ=λ�

jλr0
ða22a11 − a12a21Þ

× exp

�
−j2π a13x

0
H þ a23y0H
λr0

�

× FΠ

�
a11x0H þ a21y0H

λr0
;
a12x0H þ a22y0H

λr0

�
;ð4Þ

where a11 ¼ ðx2l − x1l Þ=20, a12 ¼ ð2x3l − x2l − x1l Þ=20, a13 ¼
ð2x3l þ x2l þ x1l Þ=4, a21 ¼ ðy2l − y1l Þ=20, a22 ¼ ð2y3l − y2l −
y1l Þ=20, a23 ¼ ð2y3l þ y2l þ y1l Þ=4. ðxil ; yil ; 0Þ, i ¼ 1, 2, 3, are
the vertices of the input triangle in the local coordinate.
Because we have deduced the FT of a deterministic diffu-
sive triangle, and it only requires affine transformation
once, this approach maintains the efficiency of the analy-
tical method that generates a hologram pixel by pixel. It
need not use the discrete numerical algorithm, whichmay
cause numerical errors when undersampling. Such pixel-
independent calculation in ahologram is also very suitable
for a graphics processing unit parallel computation.

Optical reconstruction is carried out to verify the valid-
ity of the analytical Fh-CGH for an arbitrary 3Dobject. The
3D scene (40mm × 22mm × 314mm, which is larger than
the SLM) contains two 3D teapots. Mouths of the teapots
are respectively located at the distances of 800 and
1100mm from the hologram to ensure that they are in the
Fresnel region. The optical setup is the same as Fig. 2(a).
High- quality reconstruction results are shown in Fig. 4.
The basic-triangle tiling diffuser of the 3D object supplies
a continuous and smooth surface, which performs a good
solid effect. The shading in teapots adds a vivid feeling of
curvature. When the front fat teapot is focused [Fig. 4(a)],
it becomes clear and the rear slim teapot turns to vague,
and vice versa [Fig. 4(b)]. This defocus effect gives an im-
pressive depth sensation and a strong 3D feeling.

In conclusion,wedemonstrated that theFh-CGHcanbe
employed in 3D imaging from the Fresnel to the far-field
region for accelerating computation. We developed an
analytical Fraunhofer-based algorithm to compute the
diffusive 3D scene and obtained high-quality reconstruc-
tions. We believe for 3D display purposes, Fh-CGH
may potentially benefit various CGH methods using Fres-
nel encoding, even the incoherent multiple-viewpoint-
projection method [17].
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Fig. 4. (Color online) Optical reconstruction results of two 3D
teapots. Reconstruction in (a) 800mm and (b) 1100mm.

Fig. 3. (Color online) Scheme of the FT calculation of diffusive
triangle using basic-triangle tiling method.
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