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Complete evanescent tunneling gaps in one-dimensional photonic crystals
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Complete band gaps are found in one-dimensional photonic crystals composed of negative-permittivity
and negative-permeability materials. The mechanism of these complete band gaps, unlike the Bragg
complete gaps formed by interferences of forward/backward propagating waves, originate from the
evanescent wave tunneling in the single-negative materials is reported for the first time. Moreover, it is
also reported for the first time that both Bragg complete gaps and evanescent wave tunneling complete
gaps exist in a three-constituent one-dimensional photonic structure simultaneously.

© 2008 Elsevier B.V. All rights reserved.
1. Introduction

Photonic crystals (PCs) are artificial materials with periodically
modulated dielectric function, which can create a range of for-
bidden frequencies called photonic band gaps because of Bragg
scatterings [1–3]. PCs have many potential applications because
of their novel properties, e.g., manufacturing omni-directional re-
flectors, controlling spontaneous emission in quantum devices and
manipulating light in photonic information technologies.

It is known, in the past, that three-dimensional complete gaps
just exist in three-dimensional photonic crystals (PCs), which are
difficult to fabricate. Since omni-directional band gap of one-
dimensional (1D) PCs was proposed in 1998 [4], extensive atten-
tions have been attracted and many applications about this omni-
directional band gap have been developed [4–7]. However, until
now it is still impossible to achieve complete gaps (i.e. complete
gaps in the whole momentum space inside the crystal) in 1DPCs
that are composed of positive refraction index materials (PIMs).

Recently, the extraordinary properties of negative refraction in-
dex materials (NIMs) [8] attract plenty of researches and many
interesting works about these novel materials have been reported
[9–18]. Among them, it is reported firstly that complete gaps can
appear in the 1DPC contains NIMs by Shadrivov et al. [13]. The
authors in Ref. [13] design a 1DPC consisting of three alternating
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layers made of PIMs and NIMs which possesses a complete three-
dimensional band gap, which originates from Bragg scattering.

In this Letter, we proposed another kind of complete gap in
the 1DPC consisting of single-negative (SNG) materials. We found
that the existence of such complete gaps is caused by the evanes-
cent wave tunneling in SNG materials. We also designed a three-
constituent 1DPC that possesses both Bragg-scattering-assisted and
evanescent-wave-assisted complete gaps simultaneously for both
transverse electric (TE) and transverse magnetic (TM) polarizations.
At the end of the Letter, we discussed the possible application of
appearing complete gap in the visible.

2. Model and theory analysis

Consider the 1DPC with the periodic structure of (AB)N where A
and B represent two types of SNG materials and N is the num-
ber of periods. The periodic structure coupled to a homoge-
neous medium, characterized by n0, at the interface. Electromag-
netic waves are incident upon the 1DPC from the homogeneous
medium. We assume the z axis is along the normal to the inter-
faces and the wave vector component parallel to the layers k‖ is
along the y axis. For TE wave, the electric field �E is in the re-
verse direction of y axis, and for TM wave, the magnetic field �H
is in the y direction, as shown in Fig. 1. The electric and magnetic
fields at any two positions z and z + �z in the same layer can be
related by transfer matrix [12,13,19]

Mi(�z) =
(

cos(ki�z) − 1
σi

sin(ki�z)
σ sin(k �z) cos(k �z)

)
(i = A,B), (1)
i i i

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/pla
mailto:stswhz@mail.sysu.edu.cn
http://dx.doi.org/10.1016/j.physleta.2008.10.076


170 T.B. Wang et al. / Physics Letters A 373 (2008) 169–172
Fig. 1. Schematic representation of the finite dispersive multilayered periodic struc-
ture.

where ki = (ω2εiμi/c2 − k2‖)1/2, σi = ki/μi for TE wave and σi =
ki/εi for TM wave.

For an infinite periodic structure, according to the Bloch’s theo-
rem, the dispersive relation can be written as [12,13]

cos(K L) = cos(kAdA) cos(kBdB)

− 1

2

(
σB

σA
+ σA

σB

)
sin(kAdA) sin(kBdB), (2)

where K is the Bloch wave vector, dA and dB is the thickness of
layer A and layer B respectively, L = dA + dB is the width of one
period. The condition of Eq. (2) having no real solution for k‖ is
| cos(K L)| > 1, which corresponds to the band gaps of the 1DPC. If
| cos(K L)| is always larger than 1 for all k‖ , that denotes the Bloch
wave vector K remains complex for all real k‖ , then a complete
gap occurs [13].

3. Numerical calculation and discussion

The relative permittivity and permeability of the SNG materials
in this Letter are given by the Drude model [20]

εi = ε0i − ω2
ep,i

ω2
,

μi = μ0i − ω2
mp,i

ω2
, i = A,B, (3)

where ε0i(μ0i) and ωep,i (ωmp,i) are the effective static elec-
tric (magnetic) constants and the effective electric (magnetic)
plasma frequencies, respectively. In this Letter, we choose ε0i =
μ0i = 2.828, (ωep,AL/c)2 = (ωmp,BL/c)2 = 428.8, (ωmp,AL/c)2 =
(ωep,BL/c)2 = 73.6, c is the speed of light in vacuum. This model
can be realized in artificial designed transmission lines [20–22].
For convenience, we substitute ωL/c with Ω as reduced frequency.
The relationships on permittivity, permeability, and their product
as a function of reduced frequency are shown in Fig. 2. In the fol-
lowing, we distinguish our discussion into three frequency ranges
according to the signs of permittivity and permeability.

(i) Ω > 1.96. In this frequency range, both materials A and B
are PIMs, i.e., εi > 0, μi > 0 (i = A,B). The product of permittivity
and permeability (εμ) is a positive number, as shown is Fig. 2. The
value of σA/σB is also a positive number. As is well known, there
are no complete band gaps in this frequency range.

(ii) Ω < 0.812. In this frequency range, both materials A and B
are NIMs, i.e., εi < 0, μi < 0 (i = A,B). The product of permittivity
and permeability (εμ) is a positive number as shown in Fig. 2.
The value of σA/σB also has a positive sign. According to Eq. (2),
we can find that the dispersive relation mainly depends on the
signs of εμ and σA/σB. Because εμ and σA/σB have the same
Fig. 2. Relationship between frequency and the parameters of materials A and B.

Fig. 3. Magnitudes of | cos(K L)| as a function of reduced frequency and parallel
wave vector, the grey area corresponds to | cos(K L)| < 1 and the white area is
| cos(K L)| > 1, the black line denotes | cos(K L)| = 1.

signs as that in the range of Ω > 1.96, the same dispersive relation
is in this frequency range as that in the range above Ω > 1.96.
Therefore, there are also no complete band gaps in this frequency
range.

(iii) 0.812 < Ω < 1.96. Materials A, B are epsilon-negative
(ENG) (εA < 0, μA > 0) and mu-negative (MNG) (μB < 0, εB > 0),
respectively. Thus, kA = kB becomes an imaginary number. In this
case, the dispersive relation (TE polarization) of Eq. (2) can be
written as

cos(K L) = cosh
(|kA|dA

)
cosh

(|kB|dB
)

− 1

2

( |μB|
|μA| + |μA|

|μB|
)

sinh
(|kA|dA

)
sinh

(|kB|dB
)
.

Fig. 3 shows magnitudes range of | cos(K L)| as a function of re-
duced frequency Ω and parallel wave vector k‖ , the grey and white
area represent | cos(K L)| < 1 and | cos(K L)| > 1, respectively, the
black line is | cos(K L)| = 1. One can see that, the black line I moves
to lower frequency when k‖ getting larger, and the black line II
moves to upper frequency when k‖ getting larger. They tend to a
constant frequency. Therefore, the value of | cos(K L)| in white area
is always lager than 1 for all k‖ , i.e., there exist complete gaps in
this frequency range.

4. Complete gaps IN 1DPC composed of ENG–MNG

Because εA = μB, μA = εB, one can get the same dispersive
relation for TE and TM waves by using Eq. (2). The band struc-
ture is symmetrical for both polarizations. In Fig. 4, we plot the
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Fig. 4. Projected band structure of one-dimensional photonic crystal composed of
single-negative materials with the parameters: dA = dB = 0.5L.

Fig. 5. Electric fields inside the 1DPC of (AB)16 at different frequencies: (a) Ω =
2.46995 is the up band edge of gap I in Fig. 4. (b) Ω = 1.84688 is the low band
edge of the gap II in Fig. 4. (c) Ω = 1.28366 is the up band edge of the gap III in
Fig. 4.

projected band structure of 1DPC composed of two types of SNG
materials. The grey and white areas are corresponding to the al-
lowed and forbidden bands, respectively. The band edges move to
higher frequency when Ω > 1.96, while move to lower frequency
when Ω < 0.812. Since materials A and B are PIMs (NIMs) when
Ω > 1.96 (Ω < 0.812), according to discussions in Section 3, there
are no complete gaps in these two frequency ranges. On the other
hand, there exist two complete gaps marked as II and III at the
range of (0.812, 1.96). The up edge of gap II moves to upper fre-
quency, the low edge of gap II moves to lower frequency. And
the up edge of gap III moves to upper frequency, the low edge
of gap III moves to lower frequency. The allowed band between
gaps II and III is getting narrower and narrower; the gaps II and III
are getting wider and wider. The complete gaps, thus, appear for
TE and TM polarizations simultaneously.

In order to understand the physics mechanism of the com-
plete gaps, we investigate the distributions of electric fields inside
the finite 1DPCs at some frequencies of the band edges at nor-
mal incidence. We plot the electric fields of the band edges of
these complete gaps in Fig. 5. The electric fields inside the 1DPC
of (AB)16 at different frequencies (a) Ω = 2.46995 is the up band
edge of gap I in Fig. 4; (b) Ω = 1.84688 is the low band edge of
the gap II in Fig. 4; (c) Ω = 1.28366 is the up band edge of the
gap III in Fig. 4. We can see that the electric fields of two com-
plete gap edges [Figs. 5(b) and (c)] are quite similar but are very
Fig. 6. Projected band structure of one-dimensional photonic crystal composed of
three different types of materials (ABC), C is PIMs, A and B are SNG materials with
the parameters: dA = dB = 0.45L, dC = 0.1L, εC = 1.0, μC = 1.0.

different from that of Bragg gap [Fig. 5(a)]. The electric fields of
Bragg gap edge reach maxima inside material B. The electric fields
of complete gap edges are rapidly changing at the interferences,
and reach maxima at the interfaces of ENG and MNG materials.
As is well known, the electromagnetic waves are evanescent in
SNG materials. Unlike the Bragg gap, these complete gaps origi-
nate from interactions of forward-decaying and backward-decaying
evanescent waves, which lead that the electric fields localize at the
interfaces of ENG and MNG materials.

5. Complete gaps in three-constituent 1DPC

In the above, we have considered 1DPC composed of ENG and
MNG materials. Now, we further consider a three-constituent pe-
riodic structure which is composed of three kinds of materials
(ABC)N . Dielectrics A and B are still SNG materials as given in
the foregoing discussion, and C is PIMs. Then using transfer ma-
trix method, we can get the dispersive relation

2 cos(K L) = 2 cos(kAdA) cos(kBdB) cos(kCdC)

−
(

σB

σA
+ σA

σB

)
sin(kAdA) sin(kBdB) cos(kCdC)

−
(

σC

σB
+ σB

σC

)
cos(kAdA) sin(kBdB) sin(kCdC)

−
(

σC

σA
+ σA

σC

)
sin(kAdA) cos(kBdB) sin(kCdC), (4)

the symbols in this equation have the same meaning as that in
Eq. (2). Fig. 6 shows the band structure of the three-constituent
1DPC. One can see that there are three complete gaps, denoted as
gaps I, II and III, respectively. Gaps I and II are still in the frequency
range (0.812,1.96), while gap III is in the range below 0.812.

We continue to study the physics mechanism of these complete
gaps. We plot Fig. 7 to show the behaviors of electric fields inside
the finite 1DPCs of (ABC)16 at some frequencies of the band edges
at normal incidence. We choose the frequencies (a) Ω = 0.55538
is the low band edge of the gap III in Fig. 6; (b) Ω = 1.211525
is the up band edge of the gap II in Fig. 6; (c) Ω = 1.852865 is
the low band edge of the gap I in Fig. 6. The electric fields (a),
(b) and (c) in Fig. 7 are quite similar with the electric fields (a),
(b) and (c) in Fig. 5, respectively. Complete gaps I and II are still
evanescent-wave-assisted complete gaps, they result from evanes-
cent wave tunneling. Gap III is a complete Bragg gap.
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Fig. 7. Electric fields inside the 1DPC of (ABC)16 at different frequencies: (a) Ω =
0.55536 is the low band edge of the gap III in Fig. 6. (b) Ω = 1.211525 is the up
band edge of the gap II in Fig. 6. (c) Ω = 1.852865 is the low band edge of the
gap I in Fig. 6.

Now, we analyze the formation of complete Bragg gap in this
three-constituent 1DPC. When adding the third material C, the
1DPC is alternating stacked by two types of SNG media and PIMs.
In the frequency range (0.35,0.812), the unit cell of this 1DPC
is composed of NIM–NIM–PIM, and two NIMs have the same re-
fraction index. Therefore, this 1DPC can be dealt with the one
composed of NIM–PIM. In NIM, the electromagnetic waves are
backward, since the energy flux and wave vector have the opposite
directions [8], whereas these vector have the same directions in
PIM. The formation of this complete gap can be understood by the
absence of fundamental mode in a waveguide whose core is made
of NIM materials, which have been pointed out in Refs. [13,14].
Therefore, using this three-constituent model, two types of com-
plete gaps can be obtained easily. Not only the Bragg complete gap
appear, which have been found in the previous report [13], but also
the complete evanescent tunneling gap occur, which is a new type
complete gap.

6. Discussion and conclusion

In conclusion, we have shown that a new type of complete
gap is found in one-dimensional photonic crystals composed of
two kinds of SNG materials. The complete gaps originate from the
evanescent wave tunneling in the single-negative materials. The
complete gaps are obtained simultaneously for TE and TM polar-
izations. A three-constituent 1DPC composed of two types of SNG
materials and PIMs is also studied. Two kinds of different com-
plete gaps can be found in this three-constituent 1DPC. The study
of complete gaps will be useful for a deeper understanding of the
properties of single negative materials.

Quite recently, it is shown that negative index metamaterials
can be realized in the visible [17,18]. We will discuss the possible
application of our model. Take Fig. 4(b) in Ref. [18] for example. In
the ‘secondary’ linear polarization, which is orthogonal to the pri-
mary polarization of the incident light [18], the sample’s behavior
is single negative. Namely the effective permeability (μ′) is posi-
tive, and the permittivity (ε′) is negative. If the other type of SNG
can be fabricated, whose permeability and permittivity satisfy the
relation μ = ε′ , ε = μ′ , then, the 1DPCs made by these two mate-
rials can exhibits complete gaps in the visible. And the 1DPCs with
two types of complete gaps can also be fabricated with the simi-
lar method. We believed our model can be experimentally verified
in the visible with the development of advanced nanofabrication
technologies and lead to possible application in the future.
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